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PROBLEMS OF SPACECRAFT CONTROL DURING
DESCENT IN THE ATMOSPHERE

ABSTRACT 93677
The descent of a space vehicle, from its initial deflection from
orbit and entry into the significantly dense portion of a plane-
tary atmosphere to landing in a predesignated location, is com-
prehensively analyzed for the specific case of earth, the re-
sults of which are extendable to other planets by analogy. The
material is covered from the viewpoint of flight aerodynamics
and vehicle control during descent. In the former are consid-
ered the various classes of (nonboosted) descent trajectory:
ballistic, skip, and inertial glide. It is shown that the
function of the control system must be to correct for align-
ment and magnitude errors, minimize overheating and dynamic
overloading, compensate for nonstandard atmospheric conditions
and wind disturbances, correct for rebounding when 1ift is util-
ized in descent, and augment the vehicle's natural pitch and yaw
damping, which is negligible at hypersonic speeds.

The problems of guidance and control are investigated with re-
spect to the communications, instrumentation, data processing,
servo, and corrective subsystems required for meeting the con-
trol objectives. A detailed analysis and systems sysnthesis in
terms of individual controlled parameters give a qualitative
picture of how to resolve the ultimately complex problem of
integrated control of the total vehicle and its descent

trajectory.




The landing of a space vehicle on a planet consists of two inherently [222
distinct stages: flight beyond the boundary of the atmosphere and flight within
the atmosphere. Potential systems for control in the first stage are considered
in éhapters 7, 8, and 9.

In the present chapter, attention is focused primarily on control of the
vehicle during descent into the atmosphere, i.e., at heights where the influence
of aerodynamic forces on the flight dynemics becomes significent. TFor esrth,
this state begins at altitudes on the order of 80 to 100 km.

The difference between the control systems for descent in the stmosphere
and the systems for control of the vehicle in empty space lies in the objec- 360
tives and means of control; in addition to accuracy in steering the craft to the
prescribed landing area, the control system must ensure limited serodynamic
heating and overloads on the vehicle; the primary control medis are the serody-
namic forces and moments.

This chapter discusses descent in the earth's atmosphere. The problem of
landing on certain other planets is asnalogous in principle with the earth
problem, since ‘the conditions for descent are similar (central gravitational
field, approximately spheroidal planet, exponential dependence of atmospheric
density on height, etc.).

The analysis rests on the following assumptions, which permit considerable
space savings in the bulk of the calculations, without violating the rigor of
the presentation.

1. The earth is treated as a nonrotating sphere. The atmosphere and grevi-

tational field have spherical symmetry.

Numbers in the margin indicate pagination in the original foreign text.
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2. Descent proceeds in the plane of a great circle.

3. The differential equations for descent in the atmosphere are separsble
into equatipns of longitudinal and lateral motion. The analysis is referred to
the longitudinal motion of the vehicle, as the component which most completely
governs the characteristics of descent in the atmosphere (heating, overload,
ete.).

4. The powerplant of the vehicle is nonoperative during descent. This is
considered to be the most probsble version, since the required msneuvering with-
in the atmosphere is accomplished at the expense of the craft's kinetic energy,
which is adequate for producing the controlling serodynamic forces and moments.
The use of an engine, on the other hand, involves an increase in the launching
weight due to the extra fuel and, as a result, higher power consumption in
launching of the spacecraft. It is assumed, however, thet the vehicle is
equipped with a small vernier deflecting rocket for correcting the attitude at
certain stages of the flight.

10.1. DYNAMICS OF SPACECRAFT DESCENT

The dynsmics of controlled descent of a spacecraft in the atmosphere is
determined by the aerodynamic characteristics of the vehicle, the parameters of
the atmosphere, and initial conditions of entry into the atmosphere: the veloc-
ity, angle of attack of the trajectory, and entry coordinste error relative to
the calculated coordinate. The initial conditions of entry, in turn, depend,
on the first stage of descent, i.e., flight outside the atmosphere. To esti-
mate the conditions of entry, we will examine the descent of a spacecraft init-
ially moving in some circulsr orbit of radius rg (ref. 44). We will suppose
that descent from the orbit is realized by means of an impulsive counterthrust,

which slters the orbital velocity VOcir of the vehicle by some amount AV

3




(fig. 10.1). In this case the descent trajectory will represent sn ellipse.

We will determine the descent parameters under the following typical conditionsl36l

for descent from the orbit:

( AV L ;

cir

A& 1o, (10.1)-(10.2)

HereAhi is the chenge in height during application of the deceleration impulse.

Figure 10.1l. Descent from a Circular Orbit.
It follows from the condition (10.1) that the eccentricity of the descent

ellipse is considerably less than unity. We denote

‘%ﬂ—%<h
0

=2 «o0 (10.3)
cir f
14

v ==,
VCII'

where o is the radius of the point of descent from the orbit.

On the basis of the expression (1.15) (chapter 1) for the point of descent

from the orbit, we have




v =1 + 2ycos m; 4+
+ =14 21coso,, (10.4)

wherewT is the angle between the orbital velocity vector and velocity incre-
ment vector of the vehicle due to the counterthrust impulse at the point of
descent from the orbit.

To determine the velocity of the vehicle at any point of the descent trs-
Jectory, we make use of the equation for the total constant energy of the
vehicle:

V24 2gh = V3 + 2g.h,,

whence, taking (10.4) into account, we obtain

02 = 14 27 cos o, —2— (gohy — gh) = |

0 2 (10.5)
=1+ 2ycoso, + r_o(hO— —rg—h).

Since

P=QR —{-h)?zR?‘(i +24). (!

we obtain in final form, after substitution into (10.5),

=1+ 2Y Cbs op + 22,

(10.6)

The distance traversed by the vehicle from the point of orbital descent is 1362

determined by the relation

L=?(8¢90),f (10.7)

where the minus sign applies when wT< 180°, the plus sign when W > 180°. The

values @ and @O of the angulsr distance are determined as follows. From




equation (1.13) (chapter 1)¥, we have

cosQ—=_Tra"¢ .
I—ape |
. |
ta=1———&1; L | (10.8)
fa= ‘a . "
» .l—l—e

Substituting the values of & and r_ from equations (1.13) and (1.16) end

neglecting the small higher orders, we obtain

1 1y a‘(krl“é'rcos(nT)N
% = 1 ro ra =1-0 ‘.z') a(l+e)

~l—(—a)(l —e)(1 —27coso,)=a+ e+ 2ycosor.

-

Hence, teking into account the value of e (see eq. (1.17)), we obtain an

expression for the angular range:

.

2e0soxd (ol1) [} g, 4 y(2cos w1 +

COSG:V—_——1+3COSZ‘”T (10 9)
+V T+ 3cose; )] '
At the point of descent of the vehicle from orbit, the value of the
angular range is defined by the condition o, = 0, hence
c0580=ﬂ__ [l-{—T(QCOSu),-}-V 1 4-3cos?w, )] (10.10)

V1+3cos2m1-
The slope of the vehicle trajectory @ is found by transformation of the

relation (1.12) for any point:

: 2 : e
- =—; sin®= 1 — ,
; cos & v n ]/ r2y3 :

*Equations cited from other portions of the book are presented at

the end

of the present article. - Translator.



so that

—_—

tanq).-:.‘/ r:)]\/: -—1 .
(10.11)

Making use of the expressions derived in section 1.2 of this book for r, V, 363

Va and neglecting the small higher orders, we have

tan(— P) = (— P) = V 12 sin? o, — af — 4a,7 COS ;. (10.12)

The expressions just derived, which establish a one-to-one relation be-
tween the parameters of descent outside the atmosphere and the parameters defin-
ing descent from orbit, can be used to solve the converse problem of calculating
the magnitude and direction of the increment AV to attain predetermined condi-
tions of atmospheric entry. The parameters of spacecraft descent from an orbit
at & height of 240 km to a height of 80 km sre shown in figures 10.2, 10.3, snd
10.4 (ref. LlW). The graphs make it possible to determine the values of Wy, and

AV necessary for attaining specified conditions of atmospheric entry, i.e.,

given angular range and slope of the trajectory.

‘%en \\\
. 240 .

w~270°
AY .\T-i

N\ Rl |

. 80 AN 90° ‘730—"-—‘— .
—~—
WI135°

o 902 004  Gos v

Figure 10.2. Dependence of Angular Range on the
Relative Velocity Increment.
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Figure 10.3. Dependence of the Relative Velocity
Increment on Angle of Atmospheric Entry.
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Figure 10.4. Angular Range as a Function
of Angle of Atmospheric Entry.

In actual practice, however, the true value of the vector AV differs from
the calculated value, which induces errors in the initial parameters of entry
relative to the nominal parameters. These errors, which by and large affect
the operation of the control system for stmospheric descent, are computed from
the appropriate error coefficients. The latter are the partial derivatives of
the descent parasmeters with respect to the variablescuT and AV. Differentiat-[éé&
ing equation (10.7) and recognizing (10.9), (10.10), we obtain the following

error coefficients:




oL r a7 ‘

9(av) Vocir®r l .
oL _ 2r [(g—arcoswr——T)sT;” —Fl]:‘ (10.13)-(10.1k4)

dog I 4 3cos?wy

It follows from the latter equation that the flight range error coefficient
due to orientation error in the vector AV can be reduced to zero by suitsble

choice of the nominal value for W

The results of calculations according to equations (10.13) and (10.1k4) are
represented by the graphs in figures 10.5 and 10.6, from which it is appsrent
that the essential factor determining the distance error between the point of
descent from orbit and entry into the atmosphere is the orientation error of
the vector AV, or, in other words, the angular error of the counterthrust. For

example, if w_ = 180° and Aw = 1°, the error amounts to AL = 55.5 km. The ac-£365

T

curacy of hitting a predetermined region of entry into the atmosphere can be

improved by orienting the counterthrust vector in the interval w, = 120 to 150°,

T

corresponding to typical angles of atmospheric entry of the order -1 to -3°

(fig. 10.7).
km
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Figure 10.5. Dependence of the Range Error Coefficient Due to Error
in the Magnitude of AV on the Angle of Atmospheric Entry.
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Figure 10.6. Dependence of the Range Error Coefficient Due to Error

in the Value oftuT on the Angle of Atmospheric Entry.
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Figure 10.7. Value of wy, Corresponding toé?Lﬁ@wT = 0.

The trajectory slope error coefficlents are obtained by differentiation of

equation (10.12):
% _ 1 (ﬁan,—— 22 cosu%)j

d(av) ®Vocir Y

(10.15)-(10.16)

2gi i :
0 avnc (s, 125,
0wy @ T

Calculations according to equations (10.5) and (10.6) show that the angle

of stmospheric entry changes only very slightly with errors in the counterthrust

- 10



vector (figs. 10.8 and 10.9). TFor example, with ¢ = -2°, “i

= 135° and sn error

AwT = 10°, the variation in angle of entry relative to the nominal value is

0.14°,

A r
dor) \[ | |
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’ N _wr=90° 1
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Figure 10.8. Error Coefficient for Angle of Atmospheric
Entry due to Error intoT.
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Figure 10.9. Error Coefficient for Angle of Atmospheric
Entry due to Error in the Magnitude of AV.

An analysis of the descent of orbiting spacecraft (refs. 4k and 48) shows

that with the use of modern measuring and control instruments, errors in the

system for control of the start and stop of the braking rockets and in the sys-

tem for stebilization of the vehicle's angular orientation during operation of

the braking rocket produce the following errors in the initial conditions of

atmospheric entry:

11



6¢én = +0.1° for the slope of the trajectory;

0L = +100 km in range.
en

The difference between the initial conditions for atmospheric entry and Z366

the nominal values, combined with the difference between the real atmosphere snd
the model used for preliminary calculation of the descent trajectory, leads to
conslderable scatter in the point where the spacecraft touches down on esarth.
Consequently, the problem is to create a closed-loop control system that will
guide the vehicle intc the landing area., The design of such a system poses a
number of problems relating to the fact that the vehicle cannot descend by an
arbitrary spatial trajectory by virtue of the following considerastions: At the
inception of descent in the atmosphere, the kinetic energy of the spacecraft is
very large, so that the vehicle must enter the dense layers of the atmosphere by
a8 very oblique trajectory in order to obviate ;afge overloads and heating due

to air drag; at the end of descent, after the energy of the craft has been
diminished due to heating of the air flowing past, the possibility of maneuver-
ing i1t is limited by the finite reserve of ever-diminishing energy, since the
powerplant has been shut off.

On the basis of these considerstions, the descent of the spparstus is de-
termined by a certain family of trajectories, along which flight under nominsl
conditions ensures safe descent and landing in a predetermined region with the
control units in fixed position. Such trajectories are usually called nominsl,
or reference, trajectories. The function of the guidance system for descent in
the atmosphere is to stebilize the vehicle along the calculated reference trej-
ectory under perturbation conditions or in transfer to another trejectory when
the initisl entry errors or perturbations are so great during descent that any

attempt to stabilize the vehicle into the original trajectory is either
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impossible or hazardous due to the required increase in dynamic and thermal
loads.

In order to properly evaluate the reference conditions of flight, we will
calculate the possible trajectories for uncontrolled descent of a vehicle in
the atmosphere. The total set of real descent trajectories can be divided inte
two basic types: ballistic trajectories, along which the vehicle descends with
Zero aerodynamic.quality (XK = cy/cx = O), and a glide trajectory, along which
descent is made with a positive constant quality K > 0. The latter csn be
further divided into two types: 1) skip trajectories, typified by phugoid oscil-
lations of the descending vehicle's center of mass due to skipping from the
dense layers of the atmosphere; this type of trejectory results when the sngle
of entry of the vehicle into the atmosphere is not equal to zero; 2) inertisl
glide trajectories, characterized by gradual spiral descent of the vehicle; such
trajectories result when the angle of atmospheric entry is zero.

The analytical solution of the equations of atmospheric descent, by which
the reference conditions for descent can be evaluated, have been obtained for
some special types of descent trajectories. A suitable method for the analysiséﬁil
of descent trajectories in general has been proposed in reference 30, the
essence of which is contained in seeking approximate solutions to the wvehicle
descent equations.

The vector differentiasl equation of descent in polar coordinates (fig.

10.10) is written in the form

- = gy, V \) = dVe .V V.
= | — — )4, [ — .-
¢ ’e( at C)T 9( a L ) (10.17)
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Figure 10.10. Scheme for Derivation of the
Equation of Atmospheric Descent.

In figure 10.10 and equation (10.17), the following notation is used, in addi-
tion to that introduced above: Efis the vector acceleration acting on the
vehicle, E; and'ab are unit vectors directed along the radius vector r and per-
pendicular to it, Vr is the component of the velocity vector of the vehicle in
the direction of the radius vector, X, Y are the drag and 1ift on the vehicle,
respectively, defined by the familiar equations of aerodynemics for motion in

the atmosphere:

2
:X==ch—£;—;

Y=cys.912’i, (10.18)-(10.19)

where . and cy are the aerodynamic coefficients of the corresponding forces,
S 1s the base ares of the vehicle, p is the air density.
In the altitude range O to 100 km, the standard atmospheric density is well

approximated by the exponential law

— o Bk
p=pre ", (10.20)
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where Py = 0.1k42 kg/m3 is the air density at sea level, and

B = 1.396-10'LL meter T,

The serodynamic force vector

]?=(—- mg -+ Y cos® — Xsin (D);r——(XCOS(D 4+ Ysin (D);ei (10.21)

is equel, in the sbsence of thrust, to the vehicle accelerstion vector & Z368

multiplied by the mass m of the vehicle. Hence, bearing in mind that

tan @ = vr/v , (10.22)

and meking use of equations (10.17) and (10.18), we obtain

2

@, __ &n Vi oy . X ’
R ek e ,mcm¢4—mﬁnQ
' |

. | 10.23)-(10.2k

dVs -+ ViV X (cos¢’+——§ sinCD). (10.23)-(10.24)
i

dt r m

It is stressed that r and g are not constants, but depend on the altitude
of the vehicle in flight.

To simplify solution of the system of equations (10.23) and (10.2L4), we
invoke two assumptions.

1. The relative variation dr/r of the distance from the center of the
plenet during some time interval is small in comparison with the relative vari-

ation dVT/VT of the velocity during the same interval, i.e.,

ldrjr| K ldV/V. (10.25)

2. 1In the case of vehicle descent utilizing 1lift, the slope ¢ of the
trajectory must be small enough that the horizontal component of the 1ift

vector is much smaller than the drag force, i.e.,

71 X )tand + < 1.
Y Xnd < 1. (10.26)
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The assumption (10.25) limits the segment of descent heights to a certain
interval, within which the effect of the atmosphere on the trajectory of the
vehicle is appreciable. Actually, at heights where the effect of the atmosphere
is neglibly small, we obtain the following on the basis of conservation of

momentums

dV, V= — drfr.

As the velocity head acting on the vehicle increases, the above equality
goes over +to the inequality (10.25). Solution of the descent equaetions shows
that the assumption (10.25) yields a sufficiently accurate result already for
dr/r 0.1(avT/vT), which is satisfied beginning with heights of the order
80-100 km. Above this interval, the descent trajectory can be determined from
the usual equations of celestial mechanics (see eq. (1.3), chapter 1).

The assumption (10.26) is automatically fulfilled in ballistic descent.

In vehicle descent utilizing 1ift, the assumption (10.26) limits the investiga-
tion to the case of small trajectory angles. Tn actual versions of descent byl§§2
a gliding vehicle, however, the slope of the trajectory over the segment on

which the wvehicle suffers meximum heating and loading, which is the segment of
most interest as far as the analysis of descent is concerned, is in fact small,
and the assumption (10.26) only slightly affects the general nsture of thé
solution to the descent egquations.

The condition (10.25) permits equation (10.24) to be simplified. From
equation (10.25) we have VfVTﬁr<(dVT/dt, and equation (10.24) becomes

dv,
dt

__—~7;cosd>(l4—jfkyff).g (10.27)

16



Making use of the expressions for the aerodynemics forces (10.18) and

(10.19) snd the assumption (10.26), noting also that V = VT/cos(p, we obtain

T S
dt 2( m ) cos® j . (10.28)
xS 1

As our independent varisble we choose the ratio of the horizontal velocity
component to the local circular velocity of the vehicle

Ve Ve

Veir V& (10.29)

The assumption (10.25), in conjunction with the equation dg/g = dr/r, which
is implied by the universal gravitation law, makes it possible to neglect the
derivatives of g and r relative to their derivatives with respect to both VT

and u, for example,

dv; — d(/ gru) zV— du

dt dt & (10.30)

From equation (10.23), taking equations (10.18), (10.19), and (10.29) into

account, we obtain

R S /N U« S PR R
g dt g di? : |

: +—p——ci'§1"—2—(sin©——l(cos<b). (10.31)

- 2 mcos® @ :

Equations (10.28) and (10.31) can be reduced to a single equation by means

of the substitution

Z,‘=2(in_)]/—;—u' L (10.32)
B
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Differentiating Z with respect to u and recognizing (10.25) and (10.20), we 370

obtain
Z oz _ VB dh gz dhodt |
u u? ( ) du - u dt du
I
xS (10.33)
Tt follows from a comparison of equations (10.28) and (10.30) that
du — uZ
‘7*—1/8'3 s ® \ (10.34%)

Substituting this expression into (10.33) and recognizing that dh/dt =

=V, = U4fgr tan @, we obtain

it
Zf__i:‘/zﬂs:@_ﬂ=1/g;sm¢,
u g u dt

(10.35)

Acknowledging (10.32) and (10.33), equation (10.31) can be written as

follows:
| ‘dv 1 d%
Ay T =1
g dt g dt? +
+ _uZ_ (Z’ _Z_ V ercos’(D) . (10.36)
cos? & u

We next transfrom the left-hand side of the resultant equation. Differ-

entiating equation (10.35) with respect to time, we obtain

1 dv, Zi(llsin@ _
g dt . g dt \ cos® )
_ do (10.37)
in?® ——
. l_ du | uzr u VBrsin i |
YBg dt \ cos® cos? @ ’L

whence, teking (10.30) and (10.35) into account, we find

18




=uV@dT¢ w
u—d—_(Z’-—i): Lo (10.38)

—uz'— 7+ E |
- u

Substitution of the first resultant expression into (]_0.37) vields

g dt cos? u

_—L & . _uz {uZ”+1un?¢[u—dd7<z'—i)]}. , (10.39)

Comparing this equation with (10.36) and noting that the second expressiont?,?l

(10.38) implies

Z’-——Z—=zzZ”——u—‘£—<Z’——),/

u du

we obtain the equation for the function Z in final form:

du du u

In this equation, the term cos ¢ = Vl - sin2¢ can be expressed in

terms of Z and Z° by means of equation (10.35).

d /d7 Z\ l—u 5 K cos
v (=) Cos‘d>+V@rK°°s””=0“; (10.10)

To clarify the physical interpretation of each term appearing in equation
(10.40), the expressions (10.38) and (10.36) can be used to represent (10.40)

in the form

I

i 172 uZ v

uZ”——(Z’— i) 1= cost & — VY BrKcos’ @ , 5}

Term I is the vertical component of the accelerstion; II is the vertical
component of the drag force; ITT is the resultant of the force of gravity and

centrifugal force; IV is the lift force.

19



Equation (10.40) enables us to determine the descent trajectory by numeri-
cal integration more easily than by numerical integration of the initial eque-
tions (10.23) and (10.24). 1In certsin cases, equation (10.40) can be solved in
quadratures. The cases in which this is possible are as follows:

1. Ballistic descent with a constant trajectory slope ¢ = ¢en = const.
The calculations show that in this case the resultant of the centrifugal force

and gravitational force can be neglected, whereupon the solution becomes

. u’
Zl=:]/$rsu1¢éhulne;;;. (10.42)

2. Inertial gliding descent. 1In this case, no appreciable loss of rigor
is suffered by neglecting the vertical components of the sacceleration and drag

vectors and assuming that cos @ = 1; then the solution assumes the form

'l—uz f

Zy=——=—. | 10.4
/K (10.43)
3. Skipping descent. Neglecting the resultant of the centrifugsl and 372
gravitational forces and assuming thet cos @ = 1, we obtain the solution
. en o VEr K In2 u ]
Zy—u[u LV it = — (10.11)

e
As an example of the solution of equation (10.40) by numericel integrstion,
figure 10.11 shows the values of the Z-functions for ballistic (K = 0) and
gliding (K = 0.7) descent at various angles of atmospheric entry.
Once we have the Z-functions, it is not difficult to obtain the values of
the parameters characterizing descent of the vehicle. The horizontal component
of the acceleration a_ is found from equations (10.17), (10.30), and (10.34):

-

_ W gV,
ae—i o dt .— cos @ uZ'% (lO.’-l-S)
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Figure 10.1l. Values of the Z-Functions for Atmospheric Descent
with an Initial Orbital Velocity.

To determine the slope of the vehicle trajectory, we use equation (10.35):

Z' — (Z]u) {
ver (10.46)

sin @ =

The distance As traversed by the vehicle in a circular paﬁh as the veloc-l373

ity varies from a value uy to uy can be determined by substitution of the Z-

function into equation (10.34):

cos du l
J—S 7 '/?’j z (10.47)

The relative density, normalized to the value of the density at sea level,

is calculated by means of equation (10.32), which defines the function Z:

P2 B (m\Z
e ew '(cxs)u' (10.18)

The expression for time of flight of the vehicle between the velocities

u; end u, is obtained with the help of equation (10.34):
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- ds 1 ( cos®

= = du,

f Sv, }/BgS wz (10.%9)
Uy

The thermal characteristics of the descending spacecraft in the case of

laminar flow past the vehicle are described by the following equation for the

heat flow rate per unit surface at the critical point (ref. 30) :

B v . . . . 2 t -

‘?cr=°"5“0_61/£§ Ve keal/m”-sec, | (10.50)

where R is the radius of curvaebure of the vehicle surface at the critical point.
Combining equations (10.32), (10.29), (10.48), and (10.50), we obtain for

any point on the vehicle surface

q=1600k]'/ 7.1 ‘
| Vocsr o | (10.51)

where
k= 9 s
qxp
e 11/t 7'
q=u72", (10.52)

The equilibrium temperature at any point of the vehicle surface with heat 137h

radiation from the surface is defined by the well known relation

It =4, . (10.53)
where € is the blackness coefficient of the radiating surface, ¢ is the Stefan-
Boltzmann constant.

The +total heat input to the vehicle, i.e., the total amount of heat ac-

quired by the vehicle during descent, is
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Q=S ["gepdt keal.
;

(10.54)

en i
The coefficient k2 accounts for the variation in heat flow over the entire

surface S in contact with the boundary layer. For a hemispherical bow section,

k, = 0.5 (ref. 30).

Combining equations (10.54), (10.49), and (10.51), we obtain

Uy

'Q = 4000k,S ] ) L S w7 " cosT2 bdu. (10.55)
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U3

fig{ ) deg™!

AL en'

r | ugg099 . Ugh 0,99
12“\\ en 063 =

f | » \

\\
N A 0'1; \ 2
08 k=07 \ " .
\ A

04 : 02t

0 2 4-d, 0 2 4-93

Figure 10.12., Flight Position and Range Error Coefficient
as a Function of Atmospheric Entry Angle.

The use of the Z-functions makes it possible to calculate, fairly quickly
snd with engineering relisbility, the reference trajectories and parameters for
descent of a spacecraft in the atmosphere. The most important parameters gov-
erning the optimality of the reference descent trajectory are the miss distance
of the spacecraft from the landing site and the magnitude of overlcading and L3_72

heating to which the vehicle is subjected during descent. Figure 10.12 shows
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the influence of the angle of atmospheric entry on the range and range error
coefficient; the graphs have been calculated from the Z-functions shown in
figure 10.11. It is apparent that the landing precision increases sharply with
increasing angle of entry. But then the maximum longitudinal load (fig. 10.13)
increases, limiting the angle of entry of an orbiting craft with crew to a

velue of - ¢ _ = 2-3°., Assuming that the angle error A¢en = 0.1°, in the case

en
K = O we obtain a distance error 6L = 20-30 km for @, = 2-3° If to this we
add the error caused by the disparity between the true atmosphere and the model
adopted for the calculations, the total error in hitting the target region,

accunmulated over the total period from the time the vehicle first descends from

orbit until reaching earth, will be considerably larger.
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Figure 10.13. Dependence of the Peak Load on Angle of Atmospheric Entry;‘
1) Permissible limit of short-term overloads
The thermel characteristics of the descending vehicle, calculated from

equations (10.52) and (10.55), are shown by the graphs in figure 10.1hk, from
which it is evident that increasing the slope of the trajectory on entering the
atmosphere reduces the total heat input to the wvehicle, but increases the maxi-
mum heat flow rate and, as implied by (10.53), the meximum temperature of the
sheath. An important feature of the processes involved in heating of the vehicle
is reduction of the heat flow rate when the radius of curvature of the bow sec-

tion 1s increased, as is apparent from equation (10.51).
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The peculiarities of the dynamic and thermal characteristics of atmospheric
descent at hypersonic speeds have largely dictated the practicable serodynamic
shapes that vehicles designed for landing have sssumed. The simplest profile l;{ﬁé
is that of the ballistic capsule, an example of which is the Mercury mesnned
capsule (USA), shown schematically in figure 10.15a (ref. 84). Thermal protec-
tion of the capsule is achieved by using a broad heat shield with a large
radius of curvature (about 1 m), covered with a plastic ablation material. The
shield protects the rest of the capsule, so that its temperature never exceeds
800-900°C. The plastic material is a sublimate, cooling the screen by evapora-
tion and frictional wear. The weight of the sublimeting substance is propor-
tional to the total heat input to the vehicle. Consequently, it is desirable,
in order to diminish it, to increase the angle of atmospheric enbry, thereby
reducing the total heat input. It should be realized that in this case the
landing accurance is also increased, but, on the other hand, the peak load dur-
ing descent increases. The capsule executes a "soft" landing by means of

braking parachutes, which are ejected at a height of sbout 3000 m.
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Figure 10.15. Typical Space Vehicles Intended for Atmospheric
Reentry and Lending (Not Drawn to Scale):
8) Mercury Capsule (USA); ©b) Dyna-Soar (USA).

Another conceiveble type of vehicle designed for reentry into the atmos-
phere from space flight is the winged glider. The utilization of aerodynamic
1ift for descent imparts high maneuversbility to the glider and permits the
solution of & whole complex of problems associated with flight over large dis-
tances. An example of this type of vehicle is the projected delta-wing glider
Dyna-Soar (USA) (fig. 10.15b). The problem of hest shielding during descent of
the winged glider is solved by blunting the forward sections of the wing and
fuselage, by flying with a large angle of attack to increase the frontal surface,
and by utilizing 1ift to prolong the gliding time in the upper layers of the
atmosphere,

As noted above, a sloping descent trajectory leads to an increase in the
total heat input to the vehicle. In the present situation, however, cooling is
achieved mainly by radiation dissipation rather than sublimation, and the
decisive factor is not the total heat input, which determines the weight of Ilzzz
the sublimate, but the heat flow rate, on which the temperature of the body
depends. This rate is less, the higher the atmospheric layers in which braking
of the vehcile is executed. After the kinetic enmergy has been sufficiently

quenched and there is no longer danger from overheating, the glider enters into
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flight with small angles of attack and high serodynamic quality (lift-drag
ratio), permitting the flight range to be varied efficiently end landing to be

executed in the preselected target location.

|
J

Figure 10.16. Velocity Coordinate System.

We now consider the motion of the descending vehicle sbout its center of
mass. This motion is described by the familiar equations of aircraft aerody-
namics, referred to a velocity system of coordinates (fig. 10.16). The initial
equations for analysis of the lengthwise motion of the vehicle sbout its
center of mass (i.e., motion with respect to angle of attack and pitch) include
the equation for the projection of the forces on the y-axis, which is normal to

the flight trajectory:

SpV2
Lo oW P eoso

g dt 2G ar (lO. 56)

and the equation for the moments relative to the transverse axis of the vehicle

(pitch axis):

dz¥

do,
Jz L= JZ dtz

dt

= mbS-22 ]
2 (10.57)

The following notation is used in equations (10.56) snd (10.57) and in
figure 10.16: G is the weight of the vehicle, JZ is the moment of inertia of

the vehicle about the transverse axis, b is the base length, « is the angle of
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attack, ¥.1is the pitch angle, o, is the moment coefficient relative to the
transverse axis, W, is the angular velocity of the wvehicle relative to the same
axis.

The aerodynemic coefficients appearing in equations (10.56) and (10.57)

are usually assumed to depend on the following parameters for hypersonic motion:

¢, =c, (a); }
y %y :
my=m, (e, o, 0), (10.58)
where § is the deflection angle of the control surfsce (elevator).
We will presume that the angular motion occurs in the region of small 378

deflections of the wvehicle relative to its steady attitude corresponding to
motion along the reference trajectory of descent. Then linearization of equa-
tions (10.58) yields the well known relstions

€y = L‘;a;

mzzm‘;a—}—m?-mz-!-mi 5, (10.59)

where, for simplicity in writing, the indices for the increments of the argu-
ments have been dropped.

Simultaneous solution of equations (10.56), (10.57), and (10.59), teking

into account the equation (see fig. 10.16)
a=d—P (10.60)

leads to the following nonlinear differential equation, defining the increment

in angle of attack of the vehicle relative to the reference value:

.o'L+Aa'z+Ba:n66+C,;‘ (10.61)
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where

A—“"‘ qu mz+ gcys q ’ {
i, oz G V !

The coefficlients A, B, C, n8 depend on the angle of attack of the wvehicle.
If we assume that the deviations in angle of attack relative to the reference
value are small during flight, then the coefficients of the equation will be
determined by the value of the reference angle of attack. From the known psra-
meters of the reference descent trajectory, we can calculate the variation in
the coefficients of equation (10.61) during the time of descent. Equation
(10.61) reduces to an inhomogeneous linear differential equation with varisble

coefficients. The equation can be solved by an approximate asymptotic method.

We will seek the solution of equation (10.61) in the form Z:iﬁi
, :
a==Cexp§(w-kl)da (10.62)
Letting
V= g dg=—AJ2
m::ﬁ_,§_==_ﬁ_(h11;"%) ‘ (10.63)-(10.64)

and substituting these expressions into the truncated equation (10.61), we find

«é+w2+kf+B—(iz)’¥{t~(%)zo.

(10.65)
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Assuming the condition

ot w2
-« 17 (10.66)

we have from (10.65)

M‘—"l/——BﬁL(ﬁg)a_%(é)’_: (10.67)

whence it follows thet the solution of the equation of motion with respect to

angle of attack is written in the form

1

' t t : t

T s - i
‘.1—“:(—_11) expj—-’zidt Ciexpj\l,dt—{—czexp’j-——lldt , (10.68)

0 (1} 0
\

where Xl is the positive root of equation (10.67).

Apropos the fact that the expression under the radical in (10.67) is always
real, the square root is either positive real or purely imaginary. In the first

instance, the solution (10.68) can be written in the form

t \ ¢ !
c 1 r |
azc(-”i)‘-’ exp —.—;‘Ldt sh §pdt+(p . (10.69)
p

0 0 !

in the second case
1 ¢ ¢

~a=C(£°—>2 ex S————dt st S dt ,
P P 2 et (10.70)
0 .0

where p is the modulus of }‘l’ Pg = p|t=O'
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With the initial conditions a(0) =¢xo,éx(0) = 0, the constants appearing l380

in equations (10.69) and (10.70) have the values

C=0a,}V 1+ d* (10.71)-(10.72)

¢ = arc tan a1 ,

where
_tfre 4
a.— p [2 p + 2]0‘J (10'73)
The condition (10.66) assumes the form

RGN 213'.)
4 \p P

The natural demping of hypersonic vehicles is very slight, so that the

& 1.] (10.74)

motion with respect to angle of attack is defined by equation (10.70).

It is instructive to compare the resultant solution with the one that
would be obtained if we used the so-called method of "frogzen" coefficients,
i.e., if we let the coefficients of equation (10.62) be constent during separate
intervals of the flight time. This assumption means that at every instant the
vehicle moves at a constant altitude and with constant velocity. The equation
of intrinsic angular motion with constant coefficients will have the following

form:

a+ Az + Ba=0 (4, B= const), (10.75)

and its solution

A

ame T G Ce, (10.76)
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where
ﬁ?+v/(§f~& A (10.77)

Engineering calculations of different modifications of the descent of
hypersonic vehicles show that the value of B in the expressions under the radi-
cals in equations (10.67) and (10.77) is from three to five orders of magnitude
higher than the values of the other terms in the sum, so that we may assume

with considerable accuracy

M=p=V ’—B(t)"

(10.78)

In this case, the natural frequencies of oscillations in angle of sttack, tSBl
in accordance with the solutions (10.68) and (10.76), will be equal, respec-

tively, to

‘ V
() =1 fwm‘dt :

| (10.79)-(10.80)
9::1/7?.i

A comparison of these equations shows that for small time intervals, where-
in the coefficients of the equations are assumed to be constant, the method of
"frozen" coefficients yields values for the frequency almost identical to the
frequency obtained on the basis of the asympbotic solution. This is inferred
from the identity of the equations for small time intervals wherein B(t) = const.
The picture turns out differently when the damping of the angular oscillations

ig evaluated in terms of the equation with constant coefficients. In this case,

t
- — — A
the damping is characterized by the term e %At, as opposed to(xuﬂxﬂexp——jlz; dt!
.0 i

in the asymptotic solution.
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Under real descent conditions

Sh
B()= J"

.
L

Now, allowing for (10.78), we obtain in the solution (10.68)

7&ﬁ]=vlfaﬁﬁ,

Consequently, the effect of a veristion in the coefficients of equation
(10.62) is expressed in the dependence of the angular oscilleting damping on the
velocity head during descent. Drawing an asnalogy between the angular motion of
the vehicle and the oscilletions of a spring, which are also described by
second-order differential equations, it may be stated that the indicated property
corresponds to the influence of a steadily varying spring stiffness on its
oscillation amplitude.

The graph in figure 10.1l7 shows the variation in amplitude of the natural
oscillations of a descending capsule that is unstable with respect to angle of
attack. An example of such a vehicle is the Mercury capsule, for which
§;<( 0 (ref. 84). As evident from the graph, the amplitude of natural oscil-
lation during the first half of flight decreases (curve 1), whereas the appli-
catlon of equation (10.76) would indicate distortion of the truevangular motion
of the capsule (curve 2).

Our analysis of the natural motion of & spacecraft during stmospheric 382
descent leads to the following conclusions, which have direct bearing on the
choice of comtrol system for descent end landing (refs. 23, 30, Lh).

1. The landing accuracy of a vehicle that is uncontrolled during atmos-
pheric descent can be increased by reducing the errors in the control system for

alignment of the deflecting thrust of the braking rocket during descent from the
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Figure 10.17. Angular Motion Characteristics of a Capsule.

space orbit. However, this does not eliminate the influence of the disparity
between the true atmosphere and the standard atmosphere, wind deflections, and
other perturbations on the deflection of the descent trajectory from its nominal
course. The indicated factors reduce the landing accuracy of the uncontrolled
vehicle, The accuracy is enhanced by utilizeation of & closed-loop system to
control the motion of the vehicle's center of mass during descent.

2. In addition to increasing the landing accuracy, the system for control
of the vehicle during descent should correct the descent trajectory so as to
eliminate any danger of overloading or overheating of the vehicle due to de-
parture of the atmosphere from standard conditions, wind deflections, etc.

3. Utilization of lift force to enhance the maneuverability of the
vehicle imposes on the control system the problem of coping with rebound of the
vehicle from the dense layers of the atmosphere, since rebounding, or skipping
descent imposes heavier design requirements on the construction of the vehicie,
its navigation system, and the control system.

4. The intrinsic damping of angular oscillation of the vehicle at hyper-
sonic speeds is negligibly small and must therefore be augmented by artificial
demping, induced by the control system.

5. The descent of the spacecraft in the atmosphere is characterized by

broad variation in the dynamic parameters of the motion (velocity, altitude,
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slope of the trajectory, ete.). This requires variation of the dynamic para-
meters of the control system in order to obtain optimum regulation. Variation [383
of the system parameters can be achieved by the use of self-adaptive techniques
in the control system.
10.2 DESIGN PRINCIPLES FOR DESCENT CONTROL SYSTEMS
A conceptual block diagram of & control system for the descent of a space
vehicle in the atmosphere is shown in general form in figure 10.18. We will

consider its various elements and functions.

Figure 10.18. Control System Diagram.

The acquisition and preliminery processing of information on the character-
istic descent parameters (coordinates, velocity, acceleration, orientation, etc.)
is accomplished by the navigation system NS. It possesses certain design fea-
tures related to the conditions of motion in the atmosphere at hypersonic
speeds., This refers primarily to the units which determine the spatial coordi-
nates of the vehicle relative to the earth's surface and without which the con-
struction of a closed-loop control system, ensuring srrival of the wvehicle at
the predetermined landing area, would be impossible. The use of on-board co-
ordinators of various types (radar, infrared, radiothermal, etc.) for descent
in the atmosphere involves tremendous difficulties, since the weak signals re-
flected or transmitted by the earth's surface are difficult to separate from

the background radiation emanating from the heated surface of the vehicle and
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the ionized layer of air surrounding it. Coordinate (position) information can
be transmitted by high-power radsr stations on earth.

Investigations show (ref. 56) that the signal carrier frequency must lie
between the limits from 30 to 50 Tc or above 60 Tec, where scattering of the
signal by the ionized layer and atmospheric particles is minimal (fig. 10.19).
Another powerful source of positional informstion is an on-board inertial
system., Preliminary correction of the inertial system is realized by means of
the above-mentioned informastion sources prior to formation of the ionized layer,
i.,e., before the vehicle enters the dense layers of the atmosphere.

In hypersonic descent, it is difficult to measure the parameters of the [§§Et
free stream in which the vehicle is moving. The better modern velocity and

angle-of-attack sensors function in the range of velocities no greater than

Mach 10.
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Figure 10.19. Radio Signal Scattering Spectrum.
1) Scattering, db 2) Ton cloud
For this reason, some of the parameters can only be ascertained indirectly.
For example, the angle of attack can be computed from equation (10.61) if the
engles and T are measured by an inertial system or according to the value of the
measured normal load. The influence of the descent characteristics on the oper-

ation of the remaining elements of the navigational system is less pronounced.
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The formulation of wvehicle control principles and the chcice of a descent
program are realized by the computational-decision center CDC together with the
program section PS. The need for changing the programs during descent is ex-
plained by the Limited number of control units, which prevents simultaneous
stabilizeation of the vehicle in the nominal spatial trajectory, limiting of the
temperature of the body, and maintenance of the load below the permissible
threshold. For instance, in the last stage of descent of a winged vehicle, when
the zone of & hazardous loading and heating have been passed, it is convenient
to exercise control of the spatial position of the vehicle in the coordinates
L(h) so as to bring it into a predetermined region at a given height, from
which the landing proper will be instituted (by means of parachutes, devices
for automatic guidance to the airfield, etc.). Flight proceeds at small angles
of attack, corresponding to & high lift-drag ratio, in order to provide maximum
range maneuverability of the vehicle. The deviation.of the wvelocity from the
nominal value in this case is arbitrsry and is determined by the perturbations
of the nominal conditions for descent.

On the other hand, in the initisal stége of flight in the atmosphere, when
the load and heat flow rate are continually increasing, operation of the con-
trol system for stabilization in the nominal spatial trajectory may, with ap-
preciable deviations of the initial entry conditions from nominal, lead to an
inadmissible proportion between the arbitrarily varying (relative to nominal)
flight velocity and air density, i.e., the parameters governing the thermal and
dynamic loading characteristics of descent. In this case, it is wiser to pro-
vide for limited loading or temperature, permitting error in range, which can

be eliminated at a later time.
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Loading and temperature control can be realized either directly or para- Zﬁﬁi
metrically. In the first case, the measured actual load or temperature is com-
pared with the programmed value and the mismatch is eliminated by the control
system, which alters the trajectory of the vehicle. In the second case, control
is carried out on the basis of certain indirect parameters, which uniquely de-
termine the load or temperature. Since, for example, the heat flow rate and
load are determined by the flight velocity and air density, which depends on
the height, attention needs to be centered on restricting the thermal ard dy-
namic loads by stabilization of the nominal conditions of descent, as specified
by the function h(V). Finally, in the initial stage of descent the flight of
the vehicle must proceed at large angles of attack in order to ensure uniform
heat input over the whole surface.

The CDC also has the function of varying the parameters of the control’
system as the dynamic characteristics of descent change. For this purpose, the
transfer numbers of the vehicle control system (autopilot) are varied by the
programmed or self-adaptive unit of the CDC.

The program complex in the PS is dictated by the descent objectives. In
addition to those indicated above, we also note the following essential pro-
grams: constant longitudinal load, constant vertical velocity, minimum heat
flow to the body of the vehicle, minimum total heat input, flight along the
equilibrium trajectory, maximum flight range. From the CDC output, the control
signals are fed to the amplifying and distributing subsystem ADS of the auto-
pilot, as well as to the instrument I, the readings of which are used by the
astronaut A for manual or semiautomatic control of the vehicle in case of

emergency.
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The control unit CU executes the actual displacement of the control surfac-
es or variation of the thrust from the vernier rockets, for exemple, by discrete
or continuous regulation of the nozzle opening diasmeter. The transition from re-
active stabilization of attitude to the aerodynamic mode is executed on commsnd
from the CDC at the instant the control surfaces become sufficiently effective
for serodynamic stabilization. The effectiveness criterion can be defined in
terms of the angular acceleration of the vehicle created by periodic deflection
of the control surfaces at some angle, or indirectly, according to the dynemic
pressure of the flow around the vehicle. The latter is computed in accordance
with the height and velocity of flight or from the measured longitudinal load.

10.3. CONCEPTUAL CONTROL SYSTEMS [386

We will now examine some of the operating conditions for descent control
systems as noted above. Figure 10.20 shows one version of & system for stabili-
zing the vehicle in a spatial trajectory prescribed in the coordinates of angu-
ler range © and height h (ref. 48). The control system was investigeted on a
digital computer, teking into account the varistion in welght of the vehicle due
to the loss in mass of the sublimate, veriation in the aserodynamic coeffic-
ients with Mach number M, wind perturbations in the atmosphere. The schematic
model for the hypersonic vehicle was chosen in the shape of a truncated cone
with hemispherical blunting, equipped with four small wedge-shaped triangulaxr
control surfaces, situated about the circumference of the tail section in a
cross pattern. The leading edges of the surfaces and nose section of the ve-
hicle were coated with a sublimating material. The reference trajectory for
descent was specified with consideration for the following requirements. First
of all, the power expended in control of descent must be minimized; in this

case, descent proceeds at small angles of attack, ensuring maximum effectiveness
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Figure 10.20. Block Diagram of System for Automatic Stabilization
of the Vehicle in a Spatial Reference Trajectory.

1) Command receiver 6) Cooling unit

2) Longitudinal channel of 7) Computer Channelwise
autopilot distribution of control

3) Angular dynamics of vehicle signal

4) Center-of-mass dynamics of 8) Ground radar tracking
vehicle station

5) Command transmitter 9) Reference trajectory

on the part of the control surfaces, which do not "shield" +the vehicle from the
passing airstream. Second, the load factor must not exceed 8; for this pur-
pose, the angle of atmospheric entry at a height hen = 90 km was limited to
-1.6°; furthermore, during descent, the control surfaces were deflected at =
nominal angle 5n = 4°, yhich provided for descent by a trajectory more sloping
than a ballistic trajectory. The velocity of entry into the atmosphere was
assumed equal to T.43 km/sec.

The control law, in accordance with the notation adopted in section ngz_
10.1, was assumed as follows:

8 — 8y = ki (O — 0) + by (b — )+ £y (O — ), (10.81)

where the subscript "n" denotes the nominal value of the indicated parameter.

The first two terms of equation (10.81) provide for stebilization of the
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vehicle in the programmed trajectory 6(h). The last term generates artificial
damping with respect to angle of attack.

The investigation was run with constant coefficients in the control law:

k= 100; k,= 10"t deg/km; p =025 sec. ’f

The results of the investigation show that with an open-loop system for
control of the center-of-mass motion, a discrepancy arises in the point where
the wvehicle lands in the predetermined region with an error coefficient
d(r @/a¢p= 38 km/deg (ref. 48). Closed-loop control provides a guidance ac-
curacy in range of &bout 0.04 km in the quiet atmosphere and 0.07 km with wind
disturbances in the case when the initial conditions of atmospheric entry have
the following error relative to the nominal values: Ad’en = 0.1°, '\Len = -90 km.
It follows from the graphs shown in figure 10.21 that with the control law
(10.81), oscilletory transfer processes will occur in the psrameters charac-

terizing the motion of the center of mass.
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Figure 10.21. Stabilization of Vehicle on Trajectory
(Acben = 0.1°; AL_ = -90 km) .
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Figure 10.22. Comparison of the Expenditure of Sublimate.

It is interesting to observe that the deviation in relative weight of

/G

) turns out to be less in
n.cool

spent sublimate from the nominal value QSGcool
a closed-loop control system than in an open~-loop system of -d%n4< -qﬁ.en’ and
vice-versa (fig. 10.22). This is explained by the fact that the closed-loop
system quickly reinstates the normel value of the trajectory slope angle. Con-
sequently, for - ¢en < - ‘pn.en s the trajectory of controlled flight will be
steeper than with open-loop control, the total heat input will be less, hence

the weight of the spent sublimate will also be less. In the converse situation,
the effect 1s reversed.

The variation in longitudinal load during controlled descent is charac-
terized by peaks in excess of the admissible value of 8 (fig. 10.23). The heat
flow rate toward the critical point also turms out to be above the nominal
value. Both facts indicate that in the first stage of atmospheric descent,
when the load and temperature of the vehicle increase and reach maximum values,
stabilization of the vehicle on its nominal course may lead to inadmissibly
high thermal and dynamic loads. Consequently, the system for stebilizing the
vehicle on the trajectory o(h) must be equipped with loops for restricting thel§§§L

temperature and load. In the event that the admissible values of the tempera-

ture and load factor are exceeded, the master program will be cut off, and the

Lo




vehicle will change its flight path in accordance with the operation of the cir-
cuit for limiting the indicated parameters, until such time as the unsafe

conditions are eliminated.
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Figure 10.23. Comparison of Overloads in Controlled
and Uncontrolled Descent.
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Figure 10.24, Characteristics of Capsule Weighing 1292.76 kg:

1) Center of Gravity; 2) Principal Axis; 3) Angle Reference Plane.

An interesting modification of the control system for a semiballistic
capsule (fig. 10.24) is investigated in reference 88. Under nominal conditions
of descent, the flight of the capsule proceeds at a constant angle of attack
a= 25°, corresponding to a lift-drag ratio K = 0.42 for the capsule. The angle
of attack is created as the result of assymbtery in the aerodynamic profile of
the capsule. Control of the descent trajectory in the longitudinal plane is

realized by verying the lift-drag ratio between the limits from 0.28 to 0.49
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by the deflection of braking foils relative to the nominal angular position at
a fixed angle of attack; control in the lateral plane is accomplished by tilt-
ing the capsule within the limits of +30°. In the 740 km nominal range for
descent from a height of 90 km, the total range of maneuverability amounts to
300 km in range and +370 km in lateral deviation.

A block diagram of the capsule control system is shown in figure 10.25.
It is assumed that the angular motions of the capsule are damped by a speciallﬁﬁzi
circuit of the control system., The system provides for stabilization of the
reference conditions of descent as specified in the coordinates of range L and
velocity V. The control law is based on proportionality between the deflection
AASf of the aerodynamic braking foils and the difference between the measurement

velocity Vmeas and programmed velocity Vpr

[

8 -8 =AS, =k (V meds p,) ‘ (10.82)
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Figure 10.25. Block Diagram of Capsule Control System.
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Figure 10.26. Characteristics of the Calculated Capsule Trajectory
During Atmospheric Descent: No Wind, Tilt Angle Equal
to 0°, K = 0.h2, G/cyS = 128.3
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The programmed velocity Vpr is determined by the base relation between the
range and flight velocity of the capsule for a lift-drag ratio K = 0.42
(fig. 10.26). The control principle in the coordinates of range and velocity,
as opposed to control in the coordinates of range and height, is chosen on the
basis of the following considerations. The velocity of the capsule varies more
smoothly as a function of range than of height (see fig. 10.26); the system
for controlled descent in the coordinates L and h is less suitable for the
given type of vehicle when head winds are encountered.

A head wind causes a drop in the normal velocity of the capsule, which
clearly calls for an increase in the lift-drag ratio in order to maintain the
given landing approach range. The descent control system in coordinates I. and
V creates a control action which tends to increase the lift-drag ratio with a
decrease in flight velocity. On the other hand, & head wind will tend to 1ift
the vehicle to a greater height. In this case, the descent control system in
coordinates of range and height will require a decrease in the lift-drag ratio

in accordance with the programmed relation between L and h (see fige 10.26),
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which, in the last analysis, at reduced capsule velocity can result in missing
the designated landing site.

Table 10.1 shows some results of a machine computetion of the miss distance
of a controlled capsule due to errorszlhin andAAVin in determining the height l§29
and veloclity in the initial operation of the control system, errors in measur-
ing the velocity of the capsule V¢, the influence of head wind, and veriation
in the drag coefficien.‘tAcX relative to the nominal value. The range measure-
ment error was assumed to be negligible, since the range is measured with very
high precision by & network of ground radar stations. With moderate oncoming
air currents and a suitable choice of control system parameters, the miss

distance of the capsule, as the calculations show, should be less than 2 km.

-

TABLE 10.1
NUMERTICAL RESULTS FROM SIMULATION OF SYSTEM FOR
CONTROL OF CAPSULE DESCENT IN LONGITUDINAL PLANE
Miss distance in km
Error source kX = 0.0016k
kl = 0 1
deg-sec/m
Aﬂin = 30.5 m/sec 340 0.278
AV, = -30.5 m/sec -280 -1.095
Ahin = 3000 m 181.5 -0.07h
Ahin = -3000 m -177.5 -0.185
Ang = -3000 m, AV, = 6.1 m/sec - -0.965
‘Ahin = -3000 m, Ayin = -6.1 m/sec -- ~-04575
V, = 6l m/sec -- -8.75
Ac, = 10% ~L52 ~27.7
Strong head wind -23.6 -9.6
V€ = 105 V ——— -9.’-1'5
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Consider now the operation of the descent control system for a spacecraftléQE
when a certain constant limit is placed on the longitudinal load factor (ref.
33). This kind of operation can take place in the initial, dynamically more
stressed stage of the descent. In connection with the fact that variation of
the trajectory during control affects the variation in load with greater Iag,
the comtrol law must include, in addition to the position signal with respect
to longitudinal load, & signal basedion the rate of change of load due to vari-

ation of the perameters for the center-of-mass motion of the vehicle:

8 8= fy (2= 1) + Bt - s (0 — @) (10.83)

There are some unique features in the formulation of the components of the
controlllaw. The longitudinal load, measured by an acceleratometer circuit,

is equal to

|
n==-%ic,pV% f
' (10.84)
and its derivative, taking (10.20) into account, is
n=ndn |
'+"2’ I (10.85)
where
8 Lo )]
ny=-z c.pV (V §h>,
S (10.86) -(10.87)
ny,=—pV,
2G

The component n., is attributeble to variation of the center-of-mass motion

1

parameters and is very small in comparison with ﬁ2

rate of change of load in angular motion of the wvehicle during the control

, which characterizes the

process. For practical purposes, it may be assumed that
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Consequently, the introduction of the component n into the control law is
equivalent to varying the artificial damping of angular motion of the wvehicle,

since in the interval of small angulsr amplitudes, h2 is proportional to &. In

fact, neglecting the wvariation in the parameters of the center-of-mass motion

during angular motion, we obtain from equation (10.87)

. . o
n,= -QEG— pVic2 o = ka,

where 1322

In the case when damping of the vehicle's angular motion is provided by
other means, for exampie, by means of a third term in the control law (10.81),
the component of the measured value of f© can be eliminated from the control law.

Since the measurement of n does not, in practice, mean that the value of
ﬁl required in the control law can be obtained, the second quantity must be ob-
tained by means of a computer unit which realizes the relation (10.86). Equa-
tion (10.86) can be simplified if we assume that the value of the load factor
is stabilized with sufficient precision. Then, comparing (10.84) and (10.86),

we obtain

ril———nn(—?;,‘;—_ﬁh)' ;  (10.88)

Figure 10.27 shows the variation in load and angle of attack of a winged
vehicle descending with different initial angles of atmospheric entry and con-

trolled according to the law (10.83). The nominal deflection of the elevetor
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Figure 10.27. Stabilizeation of the Load Factor nn = 3,

foll was chosen so that the nominal angle of attack would be equal to 90° to
alleviate the heating conditions. The coefficients of the control law (10.83)
were held constant. The results show that even constent transfer numbers in
the autopilot can ensure satisfactory limitation of the load (in the given
case nn = 3).

Variation of the descent parameters, primasrily the velocity head, means
that constant coefficients in the control law prove to be optimum only during
& short time interval and camnot guasrantee high-quality comtrol over the entire
flight. This brings forth the problem of readjusting the transfer numbers of
the autopilot so as to optimize their value at every instant. The stated
objective is best met with self-adaptive circuits.

Self-adaptive circuits for wvehicle attitude controllers have been rather

completely described in the literature. We will consider one of themr(ref. 23), ‘

the functional block diagram of which is shown in figure 10.28. The circuit is
based on variation of the control signal gain such that the total gain for the é93
open-loop system of vehicle + autopilot will be optimal, i.e., will be as large

as possible but, on the other hand, not so much so that the oscillatory mode
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produced in the system would exceed permissible norms, which are based on
several conditions. The tendency toward providing a high gain is dictated by
the following considerations. In & closed-loop servo system (fig. 10.29), the

transfer function for increase in gain of the forward chamnel becomes

W, (p) 1
i = i = —
lim & () = i W) - Wa )
o SEa—
s 2, SN
1]
<4
—LQ= 2 g 3 b 12 5 [
b
“e ! i o 7 <
=
8 |
!1&1 !
A \ QJ

Figure 10.28., Anguler Stabilization Channel with Self-Adaptive Loop:
dn is the Specified R.M.S. Oscillation Amplitude.

1) a-Meter 6) Filter
2) Model 7) a-Meter
3) Variable gain 8) Depolarizer
4) Elevator drive dynemics 9) Readjustment

5) Vehicle dynamics

For example, with Wé(P) = 1, we obtein ¢(p) — 1, i.e., the transfer func-
tion of a closed-loop system ensures reproduction of the control signalcxn with
very minute error. Under real conditions, the value of the forward-chammel gain

is finite. This leads to dyneamic errors in processing of the control signal,
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above all to the omset of autooscillations due to the large gain, as well as
verious kinds of non-linearities (in the amplifier stages, actuator mecharism,
etc.). The design and paremeters of the controller can be chosen so that the
autooscillation characteristics will be reduced to permissible levels with con-

current preservation of large gain in the open system. It is on this principle

that the circuit shown in figure 10.28 functions. £39h
al K Wb
Wy(p)

Figure 10.29. ©Structure of Servo System.

The circuit stabilizes the prescribed attitude of the spacecraft, for
example, the angle of attack. The difference between the actual and specified
attitude is received by the. model, which has a standard characteristic. Nor-
mally, the model is an inertial or oscillatory link, which provides the desired
error signal processing characteristic. The gain of the loop is adjusted so
that autooscillations of a definite amplitude and frequency will be maintained
in the loop. Variation of the gain is realized by a retuning circuit actuated
by the error signal between the specified and actual autooscillation amplitude
of the vehicle's angular position. The choice of frequency and amplitude is
dictated by two factors: TIn order to minimize equipment wear, reduce the power
consumption in operation of the circuit, and to improve the physioclogical envi-
romment during flight, the amplitude and frequency should be as small as pos-
sible; on the other hand, it is desirable to raise the frequency so as to speed

up self-adaptéation, and to raise the amplitude so as to augment the useful

signal against the noise background. The choice of autooscillation frequency
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is made by varying the portion of the anguler velocity signal in the feedback
section. Thus, increasing the signal moves the autooscillations into the re-
gion of higher frequencies. The oscillation amplitude is stabilized by varying

the gain of the control loop.

jor | 1yl
5 & ‘ 13 &
1 2 ™ 3
Ty |

Figure 10.30. Self-Adeptive Loop.

J

1) Vehicle dynemics 4) Drive Dynamics
2) Filter 5) Readjustment
3) Depolarizer

The self-adaptive circult is shown separately in figure 10.30. As noted
above, the circuit readjusts the gain of the control loop on the basis of the
error signal between the actual and specified amplitudes of the oscillations
in angular position. The advantage of this technique is that the oscillations
in angular velocity can be reduced to the values necessary for high-quality lzzz
readjustment, whereas the angular oscillations of the vehicle and oscillations
of the control surfaces remein small.

The measured value of the angular velocity is fed to the filter, which
transmits the high-frequency autooscillation signal and blocks the low-
frequency signal received from the model. The signal then passes to the de-
polarizer, which creates a constant voltage proportional to the r.m.s. value of
the angular velocity oscilletions. This voltage is summed with the constant

voltage corresponding to the specified r.m.s. amplitude of the oscillations.

and the difference signal is used to readjust the gain of the control loop.
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For analysis of the dynamics of the self-adaptive loop, it is necessary to
have the dependence of the variation in amplitude & on the variation in gain.
With a high autooscillation frequency and low amplitude, sufficiently sc-
curate linearization of the dynamical differentisl equations of the control
loop is possible. In this case, as shown in reference 23, the transfer function

of a closed system for readjustment of the gain has the following expression:

fal a

k p?

where a is a constant coefficient.

f

fa | 1o K (T TpT)| AX
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Tigure 10.3L. Structural Diagram of Self-Adaptive Loop.

Now the self-adaptive system (see fig. 10.30) will correspond to the
structural diagram shown in figure 10.31. The transfer function of the read-
Justment element W(p) is chosen from the stipulation of high-speed response and
stability on the part of the closed-loop system. Tt can be shown that W(p)

should represent a set of one integrating and two boosting elements:

' b (Typ 4 1) (Tap 1) |
14 (p) = ( 14 +T)p( ap -+ ) . |
1 1

Filgure 10.32 shows the logasrithmic frequency characteristic of the self-
adaptive system. The requirements of accurascy of readjustment, which impose a[396
limitation on the oscillation amplitude with meximum rate of chenge of the

closed system geain in response to change in the external conditions, determine
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the following value for the cutoff frequency:

QC = ale?

Moreover, on the basis of the conditions for system stability, the follow-

ing requirements must be fulfilled:

20LgA

Figure 10.32." Frequency Characteristics of Self-Adaptive Loop.

The above postulates are borne out by computer simulation of the self-
adaptive processes.,

The investigated systems for control of the individual hypersonic flight
parameters of a wvehicle give some idea of the control system for flight of the
vehicle as a whole. It is apparent that this system is highly complex. The
synthesis and successful design of control systems for descent and landing of

space vehicles will largely determine man's further conquest of outer space.
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EQUATIONS CTTED FROM OTHER PORTIONS OF THE BOOK

Equation (1.3): 2
m— = G /10
T

Equation (1.12):

e = Orbital eccentricity:

&
I
V|-

rOVO cosa - Areal velocity:

Equation (1.13):

I.__o.(l -e2)
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Equation (1.15):
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Equation (1.16):
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n
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Equation (1.17):
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